Determination of \((X, \gamma)\) reaction rates with \(\gamma\)-ray beams

C. Ugalde\(^{1,7}\), B. DiGiovine\(^{1}\), D. Henderson\(^{1}\), R. J. Holt\(^{1}\), K.E. Rehm\(^{1}\), A. Robinson\(^{7}\), A. Sonnenschein\(^{4}\), A. Tonchev\(^{2,5}\), R. Raut\(^{2,5}\), G. Rusev\(^{2,5}\), A. Champagne\(^{2,3}\), N. Sturchio\(^{6}\)

\(^{1}\)Argonne National Laboratory, \(^{2}\)Triangle Universities Nuclear Laboratory, \(^{3}\)University of North Carolina at Chapel Hill, \(^{4}\)Fermi National Accelerator Laboratory, \(^{5}\)Duke University, \(^{6}\)University of Illinois at Chicago, \(^{7}\)University of Chicago

- The target density is 1000-10000x higher than gas targets.
- Superheated water will nucleate from \(\alpha\) and \(^{12}\)C recoils
- The detector is insensitive to \(\gamma\)-rays.
- Reciprocity -> 100x
- Prototype tested at H\(\gamma\)S

\[\gamma + ^{16}\text{O} \rightarrow ^{12}\text{C} + \alpha \]

Monochromatic \(\gamma\)-ray beam from H\(\gamma\)S

H\(_2\)O bubble chamber

STAR
HI\gamma S at TUNL, Duke University
$^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$ at $E = 300$ keV

\[\text{Yield} \sim N_1 N_2 \sigma g \]
\[g = \epsilon \ast (1 - \text{bkgd/signal}) \]
\[0 < g < 1 \]

Kunz 2001

N1 = 2×10^{18} Carbon implanted particles
N2 = 0.5 mA = 3.12×10^{15} α-particles/s in 1 year
N1 N2 = 1.97×10^{41}
Yield = 2 events in one year

DIANA + JENSA (DUSEL)

N1 = 1×10^{19} helium particles gas target
N2 = 10 mA = 6.24×10^{16} carbon part/s in 1 year
N1 N2 = 1.97×10^{43}
Yield = 200 events in one year

LUNA-MV (Gran Sasso)

N1 = 2×10^{18} Carbon implanted particles
N2 = 0.5 mA = 3.12×10^{15} α-particles/s in 1 year
N1 N2 = 1.97×10^{41}
Yield = 2 events in one year

Bubble + HI/γS2

N1 = 3.35×10^{23} particles in liquid target
N2 = 2×10^{10} γ/s in 1 year
N1 N2 = 2.11×10^{41}, Reciprocity \rightarrow x100
Yield = 200 events in one year
Next generation light sources

ELI-NP, Romania 2015 V. Zamfir 2011

Phase 1
Very intense \((10^{13} \, \gamma/s)\), brilliant \(\gamma\)-ray beam, 0.1 % bandwidth, with \(E = 19 \, \text{MeV}\)

Phase 2 (2018-2020) \(\rightarrow 10^{15} \, \gamma/s\)

Bubble + ELI-NP (Phase 1)

- \(N_1 = 3.35 \times 10^{23} \) particles in liquid target
- \(N_2 = 1 \times 10^{13} \, \gamma/s\)

in 1 year
- \(N_1 \, N_2 = 2.11 \times 10^{44}\)
- Reciprocity \(\rightarrow x100\)
- Yield = 200,000 events in one year