Using KEPLER to constrain nuclear reactions

Sarbani Basu
Yale University
Kepler does more than search for planets. Kepler also has a programme to study stars through stellar pulsations.
Solar-like oscillators have substantial outer convection zones that randomly excite pulsations.
Huber et al. 2011
Describing the modes

Eigenfunction oscillates as function of r when

$$\omega^2 > S_l^2, N^2 \quad \text{p modes} \quad S_l^2 = \frac{l(l + 1)c^2}{r^2}$$

$$\omega^2 < S_l^2, N^2 \quad \text{g modes} \quad N^2 = g \left(\frac{1}{\Gamma_1} \frac{d \ln p}{dr} - \frac{d \ln \rho}{dr} \right) \approx \frac{g^2 \rho}{p} (\nabla_{ad} - \nabla + \nabla_{\mu})$$

$$\frac{d^2 \xi_r}{dr^2} \approx -\frac{\omega^2}{c^2} \left(\frac{S_l^2}{\omega^2} - 1 \right) \left(\frac{N^2}{\omega^2} - 1 \right) \xi_r$$

Model of present Sun
P-modes: Equidistant in frequency

\[v_{nl} \approx \Delta v \left(n + \frac{\ell}{2} + \alpha \right) + \epsilon_{nl}, \quad \text{where} \]
\[\Delta v = \left[2 \int_0^R \frac{dr}{c} \right]^{-1} \]

G-modes: Equidistant in period

\[P_{n+1,1} = P_{n,1} + \frac{P_0}{\sqrt{2}}, \quad \text{where} \]
\[P_0 = 2 \left(\int_0^{r_c} \frac{N}{r} \right)^{1} \]
What does Kepler observe?

The observed low degree modes are sensitive to stellar cores.
The observed low degree modes are sensitive to stellar cores.
How can Kepler data say anything about Nuclear Reactions Rates?

By examining the properties of stellar cores.
Example: The size of the convective core

Complication? Overshoot!

\[^{14}N(p, \gamma)^{15}O \]

Fig. courtesy Joel D. Tanner
Not just higher mass stars

Fig. courtesy Joel D. Tanner
Low mass stars, change in p-p rate

50% lower

50% higher
Low mass stars: CNO rates

50% higher
CNO rates: higher mass stars

All three models have the same M and R. CNO rates higher in both test models
Some seismic diagnostics already exist

\[D_{\ell \ell+2}(n) = \frac{\delta_{\ell \ell+2}(n)}{4 \ell + 6} = \frac{\nu(n, \ell) - \nu(n-1, \ell+2)}{4 \ell + 6} \]

\[\eta(n_1, n_2) = \left(\frac{\Delta \Omega}{\Delta} \right)^2 \left(\frac{\Delta}{\Delta} \right)^2 \left(D_{13}(n) - D_{02}(n) \right)^2 \]

Mazumdar et al. 2006
Helium burning stars.

Bedding et al.
Concluding thoughts

- It looks possible that seismic signatures from stellar cores can be used to constrain stellar nuclear reaction rates.

- We need to do more work to develop diagnostics.

- Unlike solar constraints, the constraints can be obtained only in a statistical manner.