Thermonuclear Driven Events

Michael Zingale
(Stony Brook)

- Intersection of advanced computing and nuclear astro—where should it head?
- What are the open science questions?
- What computing resources are required?
Limitations of Current Simulations

- SNe Ia, XRBs, and Nova can be broken down into multiple phases
 - Multiple codes are needed for each piece of the puzzle
 - Variety is necessity
- Need to work smarter, not just harder
 - Full DNS of these events will always be out of reach (even at the exascale)
 - Algorithm development must be hand-in-hand with hardware improvements.
Status of SNe Ia

- **Current successes**
 - Chandra models explode now, although parameterized
 - WD mergers: work under restrictive conditions. General is unsettled
 - Sub-Ch: interesting, if anything, only a niche solution.

- **What is the progenitor?**
 - Observations don't pin down single system
 - Different codes needed for merger vs. convection in Chandra model.
 - Initial conditions determined here—subsequent evolution follows

- **Deflagration → detonation transition?**
 - Needed to match observations
 - Turbulence likely key, but models now are all parameterized.

- **Why the width-luminosity relationship in the lightcurve?**
 - Radiative transfer problem
 - Few codes up to the challenge of 3-d RT (none generally available)
Status of XRBs

- **Current successes**
 - 1-d models can model multiple bursts with extensive networks
 - 2-d shallow water simulations show importance of rotation
 - No 3-d. 2-d vertical simulations still maturing.

- **How does convection change the nucleosynthesis?**
 - Multi-d problem.
 - Are ashes brought to the surface?

- **Is ignition localized to one point? How does it spread?**
 - Lateral flame propagation is hard (resolution requirements put it out of reach for full star, 3-d). Sub-grid modeling?

- **As with SNe Ia, multiple different codes are needed to answer the full spectrum.**
Status of Novae

• Current successes
 – Long history of 1-d models
 – 2-d (and some 3-d) studies over the past decade focus on the role of convection in mixing. Some disagreements, but perhaps explained by algorithmic differences.
 – Not much focus on early evolution in multi-d

• How do we get the needed enrichment?
 – Dredge up?
 – Very difficult to model: C/O enrichment can depend on the preparation of the initial model (how sharp is the interface), and numerical diffusion across that interface—how do we know what's right?

• Modeling onset, accretion, common envelope evolution...
 – Not much multi-dimensional progress
 – Important in providing a full understanding of the event
 – Again, multiple different codes are needed
NP Needs for the Exascale

- Existing codes scale well to $O(10^5)$ processors using hybrid programming techniques (MPI + OpenMP)
- Need to use GPUs at the exascale
 - Portable standards are needed (like OpenACC). We don't want to have to write custom code kernels for each architecture.
 - Rate calculations (RHS, construction of Jacobian elements) a natural candidate for offloading
- Visualization
 - Transition to runtime visualization necessary as datasets exceed 100s of TB.
- Training
 - Summer schools to teach our students algorithms, parallel techniques, high performance computing
Collaborative Code Development

- Modern codes not built by a single investigator
 - Need mechanisms to support interdisciplinary code teams.
 - NP-funded people should not have to focus all their efforts on optimizing for exascale architectures.
 - Need computational scientists / applied mathematicians onboard and involved in the scientific process. Stop reinventing the wheel.

- Community codes
 - No code is perfect—they all make approximations and all have different strengths and weaknesses. Variety is key.
 - Many existing codes apply to problems of interest to NP.
 - Funding for support and maintainence of codes? Documentation lags.
 - Funding typically comes for science results, not writing code
 - Support is time consuming.
 - How do we reward “inactivity” during development period?
 - Code development can take years before first science results
Collaborative Code Development

- **Community microphysics**
 - Helps comparisons between groups
 - Expertise of code people differs from that of microphysics people
 - Threadsafe, OpenACC, etc. need to be thought about from the start.

- **Community Radiation Transfer**
 - Strongest link to observations
 - Even basic capability is valuable